A Sequence Variation (I148M) in PNPLA3 Associated with Nonalcoholic Fatty Liver Disease Disrupts Triglyceride Hydrolysis*
نویسندگان
چکیده
Obesity and insulin resistance are associated with deposition of triglycerides in tissues other than adipose tissue. Previously, we showed that a missense mutation (I148M) in PNPLA3 (patatin-like phospholipase domain-containing 3 protein) is associated with increased hepatic triglyceride content in humans. Here we examined the effect of the I148M substitution on the enzymatic activity and cellular location of PNPLA3. Structural modeling predicted that the substitution of methionine for isoleucine at residue 148 would restrict access of substrate to the catalytic serine at residue 47. In vitro assays using recombinant PNPLA3 partially purified from Sf9 cells confirmed that the wild type enzyme hydrolyzes emulsified triglyceride and that the I148M substitution abolishes this activity. Expression of PNPLA3-I148M, but not wild type PNPLA3, in cultured hepatocytes or in the livers of mice increased cellular triglyceride content. Cell fractionation studies revealed that approximately 90% of wild type PNPLA3 partitioned between membranes and lipid droplets; substitution of isoleucine for methionine at position 148 did not alter the subcellular distribution of the protein. These data are consistent with PNPLA3-I148M promoting triglyceride accumulation by limiting triglyceride hydrolysis.
منابع مشابه
Erratum: Pathophysiology and Management of Alcoholic Liver Disease: Update 2016
Page 178, Fig. 3: The following note should be included as the last line of the figure legend: "The figure has been adapted from its original published in He S, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 2010;285:6706-6715.
متن کاملChronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis.
A genetic variant in PNPLA3 (PNPLA3(I148M)), a triacylglycerol (TAG) hydrolase, is a major risk factor for nonalcoholic fatty liver disease (NAFLD); however, the mechanism underlying this association is not known. To develop an animal model of PNPLA3-induced fatty liver disease, we generated transgenic mice that overexpress similar amounts of wild-type PNPLA3 (PNPLA3(WT)) or mutant PNPLA3 (PNPL...
متن کاملThe PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation
A sequence variation (I148M) in patatin-like phospholipase domain-containing protein 3 (PNPLA3) is strongly associated with fatty liver disease, but the underlying mechanism remains obscure. In this study, we used knock-in (KI) mice (Pnpla3148M/M ) to examine the mechanism responsible for accumulation of triglyceride (TG) and PNPLA3 in hepatic lipid droplets (LDs). No differences were found bet...
متن کاملThe additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism
There is a genetic susceptibility for nonalcoholic fatty liver disease (NAFLD). To examine the role of genetic factors in the disease, a Bayesian analysis was performed to model gene relationships in NAFLD pathogenesis. The Bayesian analysis indicated a potential gene interaction between the TM6SF2 and PNPLA3 genes. Next, to explore the underlying mechanism at the cellular level, we evaluated t...
متن کاملCirculating triacylglycerol signatures in nonalcoholic fatty liver disease associated with the I148M variant in PNPLA3 and with obesity.
We examined whether relative concentrations of circulating triacylglycerols (TAGs) between carriers compared with noncarriers of PNPLA3(I148M) gene variant display deficiency of TAGs, which accumulate in the liver because of defective lipase activity. We also analyzed the effects of obesity-associated nonalcoholic fatty liver disease (NAFLD) independent of genotype, and of NAFLD due to either P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 285 شماره
صفحات -
تاریخ انتشار 2010